Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220.682
Filtrar
1.
Microbiology (Reading) ; 170(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656296

RESUMO

Group B streptococcus (GBS) is a chain-forming commensal bacterium and opportunistic pathogen that resides in the gastrointestinal and genitourinary tract of healthy adults. GBS can cause various infections and related complications in pregnant and nonpregnant women, adults, and newborns. Investigations of the mechanisms by which GBS causes disease pathogenesis often utilize colony count assays to estimate bacterial population size in experimental models. In other streptococci, such as group A streptococcus and pneumococcus, variation in the chain length of the bacteria that can occur naturally or due to mutation can affect facets of pathogenesis, such as adherence to or colonization of a host. No studies have reported a relationship between GBS chain length and pathogenicity. Here, we used GBS strain 874391 and several derivative strains displaying longer chain-forming phenotypes (874391pgapC, 874391ΔcovR, 874391Δstp1) to assess the impact of chain length on bacterial population estimates based on the colony-forming unit (c.f.u.) assay. Disruption of GBS chains via bead beating or sonication in conjunction with fluorescence microscopy was used to compare chaining phenotypes pre- and post-disruption to detect long- and short-chain forms, respectively. We used a murine model of GBS colonization of the female reproductive tract to assess whether chaining may affect bacterial colonization dynamics in the host during chronic infection in vivo. Overall, we found that GBS exhibiting long-chain form can significantly affect population size estimates based on the colony count assay. Additionally, we found that the length of chaining of GBS can affect virulence in the reproductive tract colonization model. Collectively, these findings have implications for studies of GBS that utilize colony count assays to measure GBS populations and establish that chain length can affect infection dynamics and disease pathogenesis for this important opportunistic pathogen.


Assuntos
Infecções Estreptocócicas , Streptococcus agalactiae , Fatores de Virulência , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidade , Feminino , Infecções Estreptocócicas/microbiologia , Camundongos , Animais , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Humanos , Contagem de Colônia Microbiana , Virulência , Modelos Animais de Doenças , Gravidez
2.
Methods Mol Biol ; 2787: 209-223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656492

RESUMO

Coffea spp. is the source of one of the most widely consumed beverages in the world. However, the cultivation of this crop is threatened by Hemileia vastatrix Berk & Broome, a fungal disease, which reduces the productivity and can cause significant economic losses. In this protocol, coffee leaf segment derived from a chemical mutagenesis process are inoculated with uredospores of the pathogen. Subsequently, the gene expression changes are analyzed over the time (0, 5, 24, 48, and 120 h) using quantitative real-time polymerase chain reaction (RT-qPCR). The procedures and example data are presented for expression analysis in the CaWRKY1 gene. This procedure can be applied for quantitative analysis of other genes of interest to coffee breeders and scientists for elucidating the molecular mechanisms involved in the interaction between the plant and pathogen, potentially leading to the development of more efficient approaches for managing this disease.


Assuntos
Basidiomycota , Coffea , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Coffea/microbiologia , Coffea/genética , Basidiomycota/genética , Basidiomycota/patogenicidade , Reação em Cadeia da Polimerase em Tempo Real/métodos , Perfilação da Expressão Gênica/métodos , Mutação , Folhas de Planta/microbiologia , Folhas de Planta/genética , Interações Hospedeiro-Patógeno/genética
3.
Microbiology (Reading) ; 170(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38661713

RESUMO

Introduction. Leclercia adecarboxylata is a member of Enterobacterales, often considered an opportunistic pathogen. Recent reports have highlighted L. adecarboxylata as an emerging pathogen harbouring virulence and resistance determinants.Gap statement. Little information exists on virulence and resistance determinants in L. adecarboxylata strains isolated from environmental, food, and clinical samples.Aim. To determine the presence of resistance and virulence determinants and plasmid features in L. adecarboxylata strains isolated from environmental, food, and clinical samples, as well as their phylogenetic relationship.Results. All strains tested showed resistance to ß-lactams and quinolones but were sensitive to aminoglycosides and nitrofurans. However, even though fosfomycin resistance is considered a characteristic trait of L. adecarboxylata, the resistance phenotype was only observed in 50 % of the strains; bla TEM was the most prevalent BLEE gene (70 %), while the quinolone qnrB gene was observed in 60 % of the strains. Virulence genes were differentially observed in the strains, with adhesion-related genes being the most abundant, followed by toxin genes. Finally, all strains carried one to seven plasmid bands ranging from 7 to 125 kbps and harboured several plasmid addiction systems, such as ParDE, VagCD, and CcdAB in 80 % of the strains.Conclusions. L. adecarboxylata is an important emerging pathogen that may harbour resistance and virulence genes. Additionally, it has mobilizable genetic elements that may contribute to the dissemination of genetic determinants to other bacterial genera.


Assuntos
Antibacterianos , Enterobacteriaceae , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos , Fatores de Virulência , Antibacterianos/farmacologia , Plasmídeos/genética , Virulência/genética , Enterobacteriaceae/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/patogenicidade , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/classificação , Fatores de Virulência/genética , Humanos , Infecções por Enterobacteriaceae/microbiologia , Fenótipo , Farmacorresistência Bacteriana/genética , Quinolonas/farmacologia , beta-Lactamas/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Microbiologia de Alimentos
4.
Physiol Plant ; 176(2): e14288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644531

RESUMO

Heat shock protein 20 (Hsp20) is a small molecule heat shock protein that plays an important role in plant growth, development, and stress resistance. Little is known about the function of Hsp20 family genes in apple (Malus domestica). Here, we performed a genome-wide analysis of the apple Hsp20 gene family, and a total of 49 Hsp20s genes were identified from the apple genome. Phylogenetic analysis revealed that the 49 genes were divided into 11 subfamilies, and MdHsp18.2b, a member located in the CI branch, was selected as a representative member for functional characterization. Treatment with NaCl and Botryosphaeria dothidea (B. dothidea), the causal agent of apple ring rot disease, significantly induced MdHsp18.2b transcription level. Further analysis revealed that overexpressing MdHsp18.2b reduced the resistance to salt stress but enhanced the resistance to B. dothidea infection in apple calli. Moreover, MdHsp18.2b positively regulated anthocyanin accumulation in apple calli. Physiology assays revealed that MdHsp18.2b promoted H2O2 production, even in the absence of stress factors, which might contribute to its functions in response to NaCl and B. dothidea infection. Hsps usually function as homo- or heterooligomers, and we found that MdHsp18.2b could form a heterodimer with MdHsp17.9a and MdHsp17.5, two members from the same branch with MdHsp18.2b in the phylogenetic tree. Therefore, we identified 49 Hsp20s genes from the apple genome and found that MdHsp18.2b was involved in regulating plant resistance to salt stress and B. dothidea infection, as well as in regulating anthocyanin accumulation in apple calli.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico HSP20 , Malus , Filogenia , Doenças das Plantas , Proteínas de Plantas , Malus/genética , Malus/microbiologia , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Choque Térmico HSP20/genética , Proteínas de Choque Térmico HSP20/metabolismo , Ascomicetos/fisiologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Família Multigênica , Resistência à Doença/genética , Antocianinas/metabolismo
6.
Nat Commun ; 15(1): 3449, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664384

RESUMO

In 2017, a novel influenza A virus (IAV) was isolated from an Egyptian fruit bat. In contrast to other bat influenza viruses, the virus was related to avian A(H9N2) viruses and was probably the result of a bird-to-bat transmission event. To determine the cross-species spill-over potential, we biologically characterize features of A/bat/Egypt/381OP/2017(H9N2). The virus has a pH inactivation profile and neuraminidase activity similar to those of human-adapted IAVs. Despite the virus having an avian virus-like preference for α2,3 sialic acid receptors, it is unable to replicate in male mallard ducks; however, it readily infects ex-vivo human respiratory cell cultures and replicates in the lungs of female mice. A/bat/Egypt/381OP/2017 replicates in the upper respiratory tract of experimentally-infected male ferrets featuring direct-contact and airborne transmission. These data suggest that the bat A(H9N2) virus has features associated with increased risk to humans without a shift to a preference for α2,6 sialic acid receptors.


Assuntos
Quirópteros , Patos , Furões , Vírus da Influenza A Subtipo H9N2 , Infecções por Orthomyxoviridae , Receptores de Superfície Celular , Animais , Quirópteros/virologia , Humanos , Furões/virologia , Feminino , Masculino , Vírus da Influenza A Subtipo H9N2/fisiologia , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/transmissão , Camundongos , Patos/virologia , Replicação Viral , Influenza Humana/virologia , Influenza Humana/transmissão , Pulmão/virologia , Influenza Aviária/virologia , Influenza Aviária/transmissão , Neuraminidase/metabolismo
7.
Nat Commun ; 15(1): 3450, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664395

RESUMO

Influenza A viruses (IAVs) of subtype H9N2 have reached an endemic stage in poultry farms in the Middle East and Asia. As a result, human infections with avian H9N2 viruses have been increasingly reported. In 2017, an H9N2 virus was isolated for the first time from Egyptian fruit bats (Rousettus aegyptiacus). Phylogenetic analyses revealed that bat H9N2 is descended from a common ancestor dating back centuries ago. However, the H9 and N2 sequences appear to be genetically similar to current avian IAVs, suggesting recent reassortment events. These observations raise the question of the zoonotic potential of the mammal-adapted bat H9N2. Here, we investigate the infection and transmission potential of bat H9N2 in vitro and in vivo, the ability to overcome the antiviral activity of the human MxA protein, and the presence of N2-specific cross-reactive antibodies in human sera. We show that bat H9N2 has high replication and transmission potential in ferrets, efficiently infects human lung explant cultures, and is able to evade antiviral inhibition by MxA in transgenic B6 mice. Together with its low antigenic similarity to the N2 of seasonal human strains, bat H9N2 fulfils key criteria for pre-pandemic IAVs.


Assuntos
Quirópteros , Furões , Vírus da Influenza A Subtipo H9N2 , Infecções por Orthomyxoviridae , Replicação Viral , Animais , Furões/virologia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/fisiologia , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Quirópteros/virologia , Humanos , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/imunologia , Camundongos , Filogenia , Influenza Humana/transmissão , Influenza Humana/virologia , Pulmão/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue
8.
Curr Protoc ; 4(4): e1039, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665046

RESUMO

Clubroot caused by the obligate parasite Plasmodiophora brassicae is a devastating disease affecting the canola industry worldwide. The socio-economic impact of clubroot can be significant, particularly in regions where Brassica crops are a major agricultural commodity. The disease can cause significant crop losses, leading to reduced yield and income for farmers. Extensive studies have been conducted to understand the biology and genetics of the pathogens and develop more effective management strategies. However, the basic procedures used for pathogen storage and virulence analysis have not been assembled or discussed in detail. As a result, there are discrepancies among the different protocols used today. The aim of this article is to provide a comprehensive and easily accessible resource for researchers who are interested in replicating or building upon the methods used in the study of the clubroot pathogen. Here, we discuss in detail the methods used for P. brassicae spore isolation, inoculation, quantification, propagation, and molecular techniques such as DNA extraction and PCR. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Extraction of Plasmodiophora brassicae resting spores and propagation Support Protocol 1: Evans blue staining to identify resting spore viability Support Protocol 2: Storage of Plasmodiophora brassicae Basic Protocol 2: Generation of single spore isolates from P. brassicae field isolates Basic Protocol 3: Phenotyping of Plasmodiophora brassicae isolates Basic Protocol 4: Genomic DNA extraction from Plasmodiophora brassicae resting spores Basic Protocol 5: Molecular detection of Plasmodiophora brassicae.


Assuntos
Doenças das Plantas , Plasmodioforídeos , Plasmodioforídeos/genética , Plasmodioforídeos/isolamento & purificação , Plasmodioforídeos/patogenicidade , Doenças das Plantas/parasitologia , Brassica/parasitologia , Brassica napus/parasitologia
9.
Emerg Microbes Infect ; 13(1): 2339946, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38578304

RESUMO

Streptococcus suis is a significant and emerging zoonotic pathogen. ST1 and ST7 strains are the primary agents responsible for S. suis human infections in China, including the Guangxi Zhuang Autonomous Region (GX). To enhance our understanding of S. suis ST1 population characteristics, we conducted an investigation into the phylogenetic structure, genomic features, and virulence levels of 73 S. suis ST1 human strains from GX between 2005 and 2020. The ST1 GX strains were categorized into three lineages in phylogenetic analysis. Sub-lineage 3-1a exhibited a closer phylogenetic relationship with the ST7 epidemic strain SC84. The strains from lineage 3 predominantly harboured 89K-like pathogenicity islands (PAIs) which were categorized into four clades based on sequence alignment. The acquirement of 89K-like PAIs increased the antibiotic resistance and pathogenicity of corresponding transconjugants. We observed significant diversity in virulence levels among the 37 representative ST1 GX strains, that were classified as follows: epidemic (E)/highly virulent (HV) (32.4%, 12/37), virulent plus (V+) (29.7%, 11/37), virulent (V) (18.9%, 7/37), and lowly virulent (LV) (18.9%, 7/37) strains based on survival curves and mortality rates at different time points in C57BL/6 mice following infection. The E/HV strains were characterized by the overproduction of tumour necrosis factor (TNF)-α in serum and promptly established infection at the early phase of infection. Our research offers novel insights into the population structure, evolution, genomic features, and pathogenicity of ST1 strains. Our data also indicates the importance of establishing a scheme for characterizing and subtyping the virulence levels of S. suis strains.


Assuntos
Genoma Bacteriano , Ilhas Genômicas , Filogenia , Infecções Estreptocócicas , Streptococcus suis , Streptococcus suis/genética , Streptococcus suis/patogenicidade , Streptococcus suis/classificação , Streptococcus suis/isolamento & purificação , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/epidemiologia , China/epidemiologia , Humanos , Virulência , Animais , Camundongos , Feminino , Genômica , Fatores de Virulência/genética
10.
Cell Rep ; 43(4): 114082, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38583155

RESUMO

Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are alarmingly common, and treatment is confined to last-line antibiotics. Vancomycin is the treatment of choice for MRSA bacteremia, and treatment failure is often associated with vancomycin-intermediate S. aureus isolates. The regulatory 3' UTR of the vigR mRNA contributes to vancomycin tolerance and upregulates the autolysin IsaA. Using MS2-affinity purification coupled with RNA sequencing, we find that the vigR 3' UTR also regulates dapE, a succinyl-diaminopimelate desuccinylase required for lysine and peptidoglycan synthesis, suggesting a broader role in controlling cell wall metabolism and vancomycin tolerance. Deletion of the 3' UTR increased virulence, while the isaA mutant is completely attenuated in a wax moth larvae model. Sequence and structural analyses of vigR indicated that the 3' UTR has expanded through the acquisition of Staphylococcus aureus repeat insertions that contribute sequence for the isaA interaction seed and may functionalize the 3' UTR.


Assuntos
Regiões 3' não Traduzidas , Virulência/genética , Regiões 3' não Traduzidas/genética , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/efeitos dos fármacos , Animais , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Mariposas/microbiologia , Vancomicina/farmacologia , Antibacterianos/farmacologia , Sequência de Bases
11.
Virus Res ; 344: 199369, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608732

RESUMO

Tobacco (Nicotiana tabacum) is one of the major cash crops in China. Potato virus Y (PVY), a representative member of the genus Potyvirus, greatly reduces the quality and yield of tobacco leaves by inducing veinal necrosis. Mild strain-mediated cross-protection is an attractive method of controlling diseases caused by PVY. Currently, there is a lack of effective and stable attenuated PVY mutants. Potyviral helper component-protease (HC-Pro) is a likely target for the development of mild strains. Our previous studies showed that the residues lysine at positions 124 and 182 (K124 and K182) in HC-Pro were involved in PVY virulence, and the conserved KITC motif in HC-Pro was involved in aphid transmission. In this study, to improve the stability of PVY mild strains, K at position 50 (K50) in KITC motif, K124, and K182 were separately substituted with glutamic acid (E), leucine (L), and arginine (R), resulting in a triple-mutant PVY-HCELR. The mutant PVY-HCELR had attenuated virulence and did not induce leaf veinal necrosis symptoms in tobacco plants and could not be transmitted by Myzus persicae. Furthermore, PVY-HCELR mutant was genetically stable after six serial passages, and only caused mild mosaic symptoms in tobacco plants even at 90 days post inoculation. The tobacco plants cross-protected by PVY-HCELR mutant showed high resistance to the wild-type PVY. This study showed that PVY-HCELR mutant was a promising mild mutant for cross-protection to control PVY.


Assuntos
Proteção Cruzada , Mutação , Tabaco , Doenças das Plantas , Potyvirus , Proteínas Virais , Potyvirus/genética , Potyvirus/patogenicidade , Potyvirus/enzimologia , Tabaco/virologia , Doenças das Plantas/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência , Animais , Afídeos/virologia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Folhas de Planta/virologia , China
12.
PLoS Pathog ; 20(4): e1012147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38620039

RESUMO

Post-transcriptional regulation by small RNAs and post-translational modifications (PTM) such as lysine acetylation play fundamental roles in physiological circuits, offering rapid responses to environmental signals with low energy consumption. Yet, the interplay between these regulatory systems remains underexplored. Here, we unveil the cross-talk between sRNAs and lysine acetylation in Streptococcus mutans, a primary cariogenic pathogen known for its potent acidogenic virulence. Through systematic overexpression of sRNAs in S. mutans, we identified sRNA SmsR1 as a critical player in modulating acidogenicity, a key cariogenic virulence feature in S. mutans. Furthermore, combined with the analysis of predicted target mRNA and transcriptome results, potential target genes were identified and experimentally verified. A direct interaction between SmsR1 and 5'-UTR region of pdhC gene was determined by in vitro binding assays. Importantly, we found that overexpression of SmsR1 reduced the expression of pdhC mRNA and increased the intracellular concentration of acetyl-CoA, resulting in global changes in protein acetylation levels. This was verified by acetyl-proteomics in S. mutans, along with an increase in acetylation level and decreased activity of LDH. Our study unravels a novel regulatory paradigm where sRNA bridges post-transcriptional regulation with post-translational modification, underscoring bacterial adeptness in fine-tuning responses to environmental stress.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Processamento de Proteína Pós-Traducional , Streptococcus mutans , Streptococcus mutans/metabolismo , Streptococcus mutans/genética , Streptococcus mutans/patogenicidade , Acetilação , Virulência , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , RNA Bacteriano/metabolismo , RNA Bacteriano/genética , Cárie Dentária/microbiologia , Cárie Dentária/metabolismo , Animais , Camundongos , Humanos , Pequeno RNA não Traduzido/metabolismo , Pequeno RNA não Traduzido/genética
13.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 391-396, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645859

RESUMO

Objective: To investigate the clinical characteristics and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolated from patients with bloodstream infections in a large tertiary-care general hospital in Southwest China. Methods: A total of 131 strains of non-repeating CRKP were collected from the blood cultures of patients who had bloodstream infections in 2015-2019. The strains were identified by VITEK-2, a fully automated microbial analyzer, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The minimum inhibitory concentration (MIC) was determined by microbroth dilution method. The common carbapenemase resistant genes and virulence factors were identified by PCR. Homology analysis was performed by multilocus sequencing typing. Whole genome sequencing was performed to analyze the genomic characteristics of CRKP without carbapenemase. Results: The 131 strains of CRKP showed resistance to common antibiotics, except for polymyxin B (1.6% resistance rate) and tigacycline (8.0% resistance rate). A total of 105 (80.2%) CRKP strains carried the Klebsiella pneumoniae carbapenemase (KPC) resistance gene, 15 (11.4%) strains carried the New Delhi Metallo-ß-lactamase (NDM) gene, and 4 (3.1%) isolates carried both KPC and NDM genes. Sequence typing (ST) 11 (74.0%) was the dominant sequence type. High detection rates for mrkD (96.2%), fimH (98.5%), entB (100%), and other virulence genes were reported. One hypervirulent CRKP strain was detected. The seven strains of CRKP that did not produce carbapenemase were shown to carry ESBL or AmpC genes and had anomalies in membrane porins OMPK35 and OMPK36, according to whole genome sequencing. Conclusion: In a large-scale tertiary-care general hospital, CRKP mainly carries the KPC gene, has a high drug resistance rate to a variety of antibiotics, and possesses multiple virulence genes. Attention should be paid to CRKP strains with high virulence.


Assuntos
Proteínas de Bactérias , Carbapenêmicos , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Fatores de Virulência , beta-Lactamases , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/patogenicidade , Proteínas de Bactérias/genética , beta-Lactamases/genética , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , China/epidemiologia , Carbapenêmicos/farmacologia , Fatores de Virulência/genética , Antibacterianos/farmacologia , Virulência/genética , Masculino , Feminino , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Pessoa de Meia-Idade , Bacteriemia/microbiologia , Bacteriemia/epidemiologia , Sequenciamento Completo do Genoma/métodos
14.
J Biomed Sci ; 31(1): 43, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649998

RESUMO

Dengue viruses (DENV) are positive-stranded RNA viruses belonging to the Flaviviridae family. DENV is the causative agent of dengue, the most rapidly spreading viral disease transmitted by mosquitoes. Each year, millions of people contract the virus through bites from infected female mosquitoes of the Aedes species. In the majority of individuals, the infection is asymptomatic, and the immune system successfully manages to control virus replication within a few days. Symptomatic individuals may present with a mild fever (Dengue fever or DF) that may or may not progress to a more critical disease termed Dengue hemorrhagic fever (DHF) or the fatal Dengue shock syndrome (DSS). In the absence of a universally accepted prophylactic vaccine or therapeutic drug, treatment is mostly restricted to supportive measures. Similar to many other viruses that induce acute illness, DENV has developed several ways to modulate host metabolism to create an environment conducive to genome replication and the dissemination of viral progeny. To search for new therapeutic options, understanding the underlying host-virus regulatory system involved in various biological processes of the viral life cycle is essential. This review aims to summarize the complex interaction between DENV and the host cellular machinery, comprising regulatory mechanisms at various molecular levels such as epigenetic modulation of the host genome, transcription of host genes, translation of viral and host mRNAs, post-transcriptional regulation of the host transcriptome, post-translational regulation of viral proteins, and pathways involved in protein degradation.


Assuntos
Vírus da Dengue , Dengue , Vírus da Dengue/fisiologia , Vírus da Dengue/patogenicidade , Vírus da Dengue/genética , Humanos , Dengue/virologia , Animais , Interações Hospedeiro-Patógeno , Replicação Viral
15.
Rev Med Virol ; 34(3): e2537, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666757

RESUMO

Human papillomavirus (HPV) infection is one of the most common sexually transmitted infections worldwide. It is caused by the HPV, a DNA virus that infects epithelial cells in various mucous membranes and skin surfaces. HPV can be categorised into high-risk and low-risk types based on their association with the development of certain cancers. High-risk HPV types, such as HPV-16 and HPV-18, are known to be oncogenic and are strongly associated with the development of cervical, anal, vaginal, vulvar, penile, and oropharyngeal cancers. These types of HPV can persist in the body for an extended period and, in some cases, lead to the formation of precancerous lesions that may progress to cancer if left untreated. Low-risk HPV types, such as HPV-6 and HPV-11, are not typically associated with cancer but can cause benign conditions like genital warts. Genital warts are characterised by the growth of small, cauliflower-like bumps on the genital and anal areas. Although not life-threatening, they can cause discomfort and psychological distress. HPV is primarily transmitted through sexual contact, including vaginal, anal, and oral sex. It can also be transmitted through non-penetrative sexual activities that involve skin-to-skin contact. In addition to sexual transmission, vertical transmission from mother to child during childbirth is possible but relatively rare. Prevention of HPV infection includes vaccination and safe sexual practices. HPV vaccines, such as Gardasil and Cervarix, are highly effective in preventing infection with the most common high-risk HPV types. These vaccines are typically administered to adolescents and young adults before they become sexually active. Safe sexual practices, such as consistent and correct condom use and limiting the number of sexual partners, can also reduce the risk of HPV transmission. Diagnosis of HPV infection can be challenging because the infection is often asymptomatic, especially in men. In women, HPV testing can be done through cervical screening programs, which involve the collection of cervical cells for analysis. Abnormal results may lead to further diagnostic procedures, such as colposcopy or biopsy, to detect precancerous or cancerous changes. Overall, HPV infection is a prevalent sexually transmitted infection with significant implications for public health. Vaccination, regular screening, and early treatment of precancerous lesions are key strategies to reduce the burden of HPV-related diseases and their associated complications. Education and awareness about HPV and its prevention are crucial in promoting optimal sexual health. This study aimed to carry out a literature review considering several aspects involving HPV infection: Global distribution, prevalence, biology, host interactions, cancer development, prevention, therapeutics, coinfection with other viruses, coinfection with bacteria, association with head and neck squamous cell carcinomas, and association with anal cancer.


Assuntos
Neoplasias , Infecções por Papillomavirus , Humanos , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/transmissão , Neoplasias/virologia , Neoplasias/epidemiologia , Neoplasias/prevenção & controle , Papillomaviridae/fisiologia , Papillomaviridae/genética , Papillomaviridae/patogenicidade , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/imunologia , Interações entre Hospedeiro e Microrganismos , Feminino , Masculino
16.
Cells ; 13(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38667331

RESUMO

Gynecological and obstetric infectious diseases are crucial to women's health. There is growing evidence that links the presence of Fusobacterium nucleatum (F. nucleatum), an anaerobic oral commensal and potential periodontal pathogen, to the development and progression of various human diseases, including cancers. While the role of this opportunistic oral pathogen has been extensively studied in colorectal cancer in recent years, research on its epidemiological evidence and mechanistic link to gynecological diseases (GDs) is still ongoing. Thus, the present review, which is the first of its kind, aims to undertake a comprehensive and critical reappraisal of F. nucleatum, including the genetics and mechanistic role in promoting adverse pregnancy outcomes (APOs) and various GDs, including cancers. Additionally, this review discusses new conceptual advances that link the immunomodulatory role of F. nucleatum to the development and progression of breast, ovarian, endometrial, and cervical carcinomas through the activation of various direct and indirect signaling pathways. However, further studies are needed to explore and elucidate the highly dynamic process of host-F. nucleatum interactions and discover new pathways, which will pave the way for the development of better preventive and therapeutic strategies against this pathobiont.


Assuntos
Fusobacterium nucleatum , Resultado da Gravidez , Humanos , Feminino , Fusobacterium nucleatum/patogenicidade , Gravidez , Infecções por Fusobacterium/complicações , Infecções por Fusobacterium/microbiologia , Doenças dos Genitais Femininos/microbiologia , Neoplasias/microbiologia
17.
Toxins (Basel) ; 16(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38668599

RESUMO

Velvet (VeA), a light-regulated protein that shuttles between the cytoplasm and the nucleus, serves as a key global regulator of secondary metabolism in various Aspergillus species and plays a pivotal role in controlling multiple developmental processes. The gene vepN was chosen for further investigation through CHIP-seq analysis due to significant alterations in its interaction with VeA under varying conditions. This gene (AFLA_006970) contains a Septin-type guanine nucleotide-binding (G) domain, which has not been previously reported in Aspergillus flavus (A. flavus). The functional role of vepN in A. flavus was elucidated through the creation of a gene knockout mutant and a gene overexpression strain using a well-established dual-crossover recombinational technique. A comparison between the wild type (WT) and the ΔvepN mutant revealed distinct differences in morphology, reproductive capacity, colonization efficiency, and aflatoxin production. The mutant displayed reduced growth rate; dispersion of conidial heads; impaired cell wall integrity; and decreased sclerotia formation, colonization capacity, and aflatoxin levels. Notably, ΔvepN exhibited complete growth inhibition under specific stress conditions, highlighting the essential role of vepN in A. flavus. This study provides evidence that vepN positively influences aflatoxin production, morphological development, and pathogenicity in A. flavus.


Assuntos
Aflatoxinas , Aspergillus flavus , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Aspergillus flavus/patogenicidade , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Aspergillus flavus/crescimento & desenvolvimento , Aflatoxinas/genética , Aflatoxinas/biossíntese , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Virulência , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/genética
18.
Cell Rep ; 43(4): 114050, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38564336

RESUMO

Seo et al.1 shed light on virus-host interactions as they reveal how poxvirus A51R stabilizes microtubules in infected cells, which impacts vaccinia virus virulence in mice by potentially inhibiting reactive-oxygen-species-dependent antiviral responses in macrophages.


Assuntos
Microtúbulos , Vírus Vaccinia , Microtúbulos/metabolismo , Animais , Virulência , Vírus Vaccinia/patogenicidade , Vírus Vaccinia/fisiologia , Humanos , Camundongos , Macrófagos/virologia , Macrófagos/metabolismo , Poxviridae/patogenicidade , Poxviridae/genética , Poxviridae/fisiologia
19.
Cell Rep ; 43(4): 114051, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38564334

RESUMO

Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infection (UTI). UPEC invades bladder epithelial cells (BECs) via fusiform vesicles, escapes into the cytosol, and establishes biofilm-like intracellular bacterial communities (IBCs). Nucleoside-diphosphate kinase (NDK) is secreted by pathogenic bacteria to enhance virulence. However, whether NDK is involved in UPEC pathogenesis remains unclear. Here, we find that the lack of ndk impairs the colonization of UPEC CFT073 in mouse bladders and kidneys owing to the impaired ability of UPEC to form IBCs. Furthermore, we demonstrate that NDK inhibits caspase-1-dependent pyroptosis by consuming extracellular ATP, preventing superficial BEC exfoliation, and promoting IBC formation. UPEC utilizes the reactive oxygen species (ROS) sensor OxyR to indirectly activate the regulator integration host factor, which then directly activates ndk expression in response to intracellular ROS. Here, we reveal a signaling transduction pathway that UPEC employs to inhibit superficial BEC exfoliation, thus facilitating acute UTI.


Assuntos
Caspase 1 , Infecções por Escherichia coli , Núcleosídeo-Difosfato Quinase , Piroptose , Infecções Urinárias , Escherichia coli Uropatogênica , Escherichia coli Uropatogênica/patogenicidade , Animais , Infecções Urinárias/microbiologia , Infecções Urinárias/patologia , Camundongos , Caspase 1/metabolismo , Núcleosídeo-Difosfato Quinase/metabolismo , Núcleosídeo-Difosfato Quinase/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/patologia , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Feminino , Bexiga Urinária/microbiologia , Bexiga Urinária/patologia , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transdução de Sinais
20.
Cell Rep ; 43(4): 114033, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38568811

RESUMO

Small GTPases of the Ras subfamily are best known for their role as proto-oncoproteins, while their function during microbial infection has remained elusive. Here, we show that Legionella pneumophila hijacks the small GTPase NRas to the Legionella-containing vacuole (LCV) surface. A CRISPR interference screen identifies a single L. pneumophila effector, DenR (Lpg1909), required for this process. Recruitment is specific for NRas, while its homologs KRas and HRas are excluded from LCVs. The C-terminal hypervariable tail of NRas is sufficient for recruitment, and interference with either NRas farnesylation or S-acylation sites abrogates recruitment. Intriguingly, we detect markers of active NRas signaling on the LCV, suggesting it acts as a signaling platform. Subsequent phosphoproteomics analyses show that DenR rewires the host NRas signaling landscape, including dampening of the canonical mitogen-activated protein kinase pathway. These results provide evidence for L. pneumophila targeting NRas and suggest a link between NRas GTPase signaling and microbial infection.


Assuntos
Proteínas de Bactérias , GTP Fosfo-Hidrolases , Legionella pneumophila , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidade , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Regulação para Baixo , Células HEK293 , Doença dos Legionários/microbiologia , Doença dos Legionários/metabolismo , Vacúolos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...